Researchers at Carnegie Mellon University have developed a method of 3D printing microscale ice structures that can be used as sacrificial templates to form intricate channels inside other parts.
This ‘inside-out’ 3D printing process involves jetting water droplets onto a custom-built platform, capable of freezing them upon landing at a temperature of -31 °F. These smooth, support-free ice sculptures can then be dunked in resin and cured, in a way that melts them, leaving behind parts with complex internal pathways.
According to the team, the technology has the potential to yield devices featuring fully-fledged networks of liquid or airflow conduits, including anything from soft robots with the ability to safely and non-invasively interact with patients, to flexible electronics and biomimicking human tissues with vein-like channels.
“Using our 3D ice process, we can…